Multiple Fault Diagnosis Research on Motors in Aluminum Electrolytic Based on ICA Feature Extraction
نویسندگان
چکیده
Motors as the actuator in the aluminum electrolysis process, mainly used for control the lifting of the anode to control the cell voltage, make the electrolytic tank keep in the best condition, once the motors failed, slot voltage will be out of control. This paper study on the fault of the motors in the process of aluminum electrolysis. In this paper adopts the EMD algorithm for various stator current signal data preprocessing, it has high adaptive decomposition ability and good ability, and then use the ICA algorithm extract feature of the current which has been denied. The extracted features input to the rough neural network for fault diagnosis and classification and gives the results of fault diagnosis. Through the simulation and analysis verify the feasibility and superiority of this model. Copyright © 2014 IFSA Publishing, S. L.
منابع مشابه
Variable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes
Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...
متن کاملA Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibr...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014